Graph Minor Theory László

نویسندگان

  • Seymour
  • Klaus Wagner
چکیده

A monumental project in graph theory was recently completed. The project, started by Robertson and Seymour, and later joined by Thomas, led to entirely new concepts and a new way of looking at graph theory. The motivating problem was Kuratowski’s characterization of planar graphs, and a far-reaching generalization of this, conjectured by Wagner: If a class of graphs is minor-closed (i.e., it is closed under deleting and contracting edges), then it can be characterized by a finite number of excluded minors. The proof of this conjecture is based on a very general theorem about the structure of large graphs: If a minor-closed class of graphs does not contain all graphs, then every graph in it is glued together in a tree-like fashion from graphs that can almost be embedded in a fixed surface. We describe the precise formulation of the main results and survey some of its applications to algorithmic and structural problems in graph theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

General Lower Bounds for the Minor Crossing Number of Graphs

There are three general lower bound techniques for the crossing numbers of graphs: the Crossing Lemma, the bisection method and the embedding method. In this contribution, we present their adaptations to the minor crossing number. Using the adapted bounds, we improve on the known bounds on the minor crossing number of hypercubes. We also point out relations of the minor crossing number to strin...

متن کامل

Graph minors and the crossing number of graphs

There are three general lower bound techniques for the crossing numbers of graphs, all of which can be traced back to Leighton’s work on applications of crossing number in VLSI: the Crossing Lemma, the Bisection Method, and the Embedding Method. In this contribution, we sketch their adaptations to the minor crossing number.

متن کامل

Szemerédi’s Lemma for the Analyst

Szemerédi’s Regularity Lemma is a fundamental tool in graph theory: it has many applications to extremal graph theory, graph property testing, combinatorial number theory, etc. The goal of this paper is to point out that Szemerédi’s Lemma can be thought of as a result in analysis. We show three different analytic interpretations.

متن کامل

0 M ay 2 00 5 Contractors and connectors of graph algebras ∗ László

We study generalizations of the " contraction-deletion " relation of the Tutte polynomial, and other similar simple operations, to other graph parameters. The question can be set in the framework of graph algebras introduced by Freedman, Lovász and Schrijver in [2], and it relates to their behavior under basic graph operations like contraction and subdivision. Graph algebras were introduced in ...

متن کامل

Geometric Representations of Graphs

The study of geometrically defined graphs, and of the reverse question, the construction of geometric representations of graphs, leads to unexpected connections between geometry and graph theory. We survey the surprisingly large variety of graph properties related to geometric representations, construction methods for geometric representations, and their applications in proofs and algorithms.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005